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A few examples!? have been shown for the
comparison of the theories of strictly regular
solutions with experiments, since there are few
suitable systems for which measurements
necessary to adequate comparison have been
made. In cases of many systems in which
mixtures of two components show so great
deviations from Raoult’s law that the solutions
separate into two liquid phases, the solutions
are generally formed from chemically dissimilar
constituents which are different in molecular
size, chemical structure, polarity and so on,
these conditions being far from those for form-
ing regular mixtures. It, therefore, was
impossible that the comparisons of the theories
with experimental results obtained for such
mixtures with great deviations from ideal
behavior were made in order to verify the
validity of theories and to extend their appli-
cation to the field of the chemical engineering
design, but now the application of the theories
of strictly regular solutions to most partially
miscible liquid systems and the estimation of
the interchange energy from the mutual solu-
bility data have become possible as described
in the previous paper®. It is interesting and
desirable from a practical viewpoint to study
what relations are obtained between the inter-
change energy or the co-operative energy and
the temperature for such systems.

3. Theoretical Expressions for Estimating
Co-operative Energy from Compositions
in Two Coexisting Phases

It has been shown that the problem of the
phase transition for the regular mixtures of
two components is mathematically identical
with that of the so-called Ising model of fer-
romagnetism and that there is an equivalent
relation between the compositions in mutual
equilibrium of two liquid phases and the
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intensity of spontaneous magnetization in the
absence of a magnetic field**. No exact
results for the three-dimensional problems are
available at present that could be applied to
phase equilibria, but exact closed form expres-
sions of the free energy in the absence of a
magnetic field®?, which corresponds to the theory
of regular solutions with equal ratio of con-
stituents, and of the spontaneous magnetiza-
tion® are available for the two-dimensional
model, particularly -the square net, though it
has been found that there is a marked difference
in behavior between two- and more realistic
three-dimensional model™.

The intensity of spontaneous magnetization
per spin at zero magnetic field for a two-
dimensional ferromagnetic Ising square lattice
is given by

I= [_I—J“—ci q¢ —6C2+C‘)”2} .

(1-g5)?
for {=v'2 -1 G, 1D
C=exp(—e/kT) (3,2)

where ¢ is the interaction energy between each
pair of nearest neighbor antiparallel spins
assuming the interaction energy between pairs
of parallel spins to be zero, and k is the
Boltzmann constant.

By the correspondence of the theory of
regular solutions to the Ising model, the inter-
change energy or one half of the energy increase
of the whole system when a pair of two
molecules of type I and a pair of two mole-
cules of type II are converted into two pairs
of a molecule of type I and a molecule of
type II, w, will be obtained in terms of the
mole fractions of component II in two coexist-
ing phases, x, by the relation

exp(W/kT) = l:_._l_ + [1 - {l - (] -2x)5}.'|,"2] 1,2 74

{1=(1—=2x)%}*
(3,3

for the square lattice. At the critical solution

temperature,
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x=1/2, exp(w/kT).=[1+1v2]1* (3,4)

The information on the behavior of the
model has been provided by exact series
expansion of the partition function to any
desired degree of accuracy*7-%. In the rigorous
expansion of the partition function by Bethe-
Kirkwood’s method of moments®, the molar
free energy of mixing in the notation used by
Guggenheim?® is given by

AdmF
RT =(1-x)In(1—x)+xIn x+x(l—x)§-
2[Lf 2w\ L 2w L[ 2w \*
- 2[2:(&?) + 3:(sz) + (sz) + }
(3,5)
where z is the coordination number and
L=x*(1—x)? (3,6)
L=x*(1—x)2(1—-2x)? 3,7
Li=x2(1—x)2(1 —6x+6x?)?
+6(%-—1)x‘(1—x)‘ (3,8)
Is=x2(1—x)2(1 —2x)%(1 —12x + 12x2)?
+60(%—1)x‘(1—x)4(1—2x)2 (3,9

Is=x(1—x)?{1—60x (1 —x) (1 —2x)?}
+30(13%+17)x*(1—x)4

+120( & —30%—-28)x5(1—x)5

+ 120( —4 T‘+66—z’1 +42)x‘3(1 —x)8
(3,10)

¥ 71 and 7. are parameters depending on the
lattice and defined by

y=232%s—2(2—1) (3,11)
al’
1= Z}zsaa'_3232naf+22(z—l) (3,12)
a a'
Tz= rzuzaa‘zwa”zrfa_3(1_2)2 Zz‘mr
a'a a’
+22(z—1)(z-2) (3,13)

where 2z, is another coordination number
denoting the number of first neighbors com-
mon to the sites a and a'.

The compositions in two coexisting phases
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are given by the points where the value of
the first derivative of the free energy of mix-
ing is zero, owing to the symmetry of the
solubility curve. To obtain the value of w/kT
it is convenient to introduce an abbreviation
u defined by

g X [
u=In " /(1 2x)

(3,14)
Differentiating Eq. 3,5 with respect to x and
setting d(dmF/RT)/dx equal to zero, the ex-
pression for u/z as a power series in 2w/zkT
is obtained, which can be inverted into an
expression for 2w/zkT as a power series in

u/z as follows:
x(l x)/2u
3 ( z )
x(1—x)

+‘—*'12—{l +2x(1—x)

+12°(1 —x)%}(%)a

k—T_H[l+x(1_ x)—

x(1—x)
+—-—-60 {1+8x(1—x)

4
+120x2(1—x)%(1 —-2x+2x2)%}(£:—)

)

x)
160 { +22x(1—x)
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+30x°(1 -x)ﬂ(lo-a— 1o4l)
Z F4

+360x¢ (1—x)° (” 42
o2)(E -]

1 41 1
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16
H(Fred)n

(16+10_y. _ir__‘_ )—l-.E_ ...... ]
zZ 3z

(3,15)

And

et

W

(3,16)

The evaluation of the series of coefficients is
increasingly tedious and complicated as the
series is ascended.

Since the series converges to the exact value
extremely slowly, and the presence of a
magnetic field, which corresponds to regular
solutions of varying concentrations, is difficult
to deal with by an exact method even in
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two-dimensions, several approximate solutions
have been derived in closed form?!: 1911,

In the first (pairs) approximation! treated
according to the quasi-chemical equilibrium
conditions which is equivalent to Bethe ap-
proximation, w is given by

exp (w/zkT) = —r)/(PV'e—p-112)  (3,17)

where r is the molecular ratio. At the critical

solution temperature

z -
-2

In the zeroth approximation!® which cor-
responds to the limiting form taken by the
first approximation when the coordination
number is made infinite, and is equivalent to
Bragg-Williams approximation,

exp (w/zkT )= z (3,18)

T lix—/(l—Zx);u (3,19)

kT
Eq. 3,19 is only the first term in the Egq.
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3,15 of rigorous series expansion. At the
critical solution temperature
(w/ET)c=2 (3, 20)

Several methods which are capable of yielding
successively higher approximations in the quasi-
chemical method have been developed!: %1%,
but the use of a large group introduces trou-
blesome calculations in practical applications
of these higher approximations. In the higher
approximation for the case of the simple square
lattice with the tetrahedra as basic figure!+ ',
which is the simplest case treated by the
method of a logical extention to larger groups
of the quasi-chemical approximation for pairs,
the method being equivalent to an approxima-
tion developed by Kikuchi, w/kT is obtained
from

exP(:—T): [(‘/?+ D24+{(V 7 +1)¢+4r}i/? ]s

2V'r
(3,21)
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Fig. 4. Relations between w/kT and T./T for several systems.
Corresponding values along curves 2 and 2' are

curve 1 are obtained from Eq. 3,3.
obtained from Eq. 3,17 assuming z=4.

Values of w/kT along

Symbol System Ref.
O Ethylbenzene—Liquid ammonia 13
-0O- Carbon tetrachloride—Perfluoromethylcyclohexane 14
o} 4 — # 15
o n-Butane—Perfluoro-n-butane 16
X n-Hexane—Methanol 17
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Book Company, Inc., New York (1928), p. 386. :
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At the critical solution temperature
exp W/kT).=Q2+V'5)* (3,22)
When the value of w/kT is less than the
value given by Eqgs. 3,4, 3,16, 3,18, 3,20 or
3, 22, the separation into two liquid phases
does not occur.

4. Dependency of w/kT upon Temperature

All formulae described in the above section
contain the co-operative energy w in the form
of the ratio w/kT or in particular exp (w/kT).
It is convenient to compare the theories with
the experiment, regarding either of these
quantities as a single parameter whose value
determines all the thermodynamic properties
at a given temperature. Using ¢ defined by
Eq. 2,5 in the preceding paper instead of x,
similar results between the functions w/kT

! T
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Fig. 5. Plot of values of w/kT obtained

from several theoretical expressions
against T./T for the system ethylbenzene
—liquid ammonia.

Curve 1 is obtained from Eq. 3,3;
curve 2 is obtained from Eq. 3,21;
curve 3 is the expansion to terms of order
(2u/z)* as given by Eq. 3,15 assuming
z=4; curve 4 corresponds to Eq. 3,17
assuming z=4; curves 5, 6 and 7 are the
expansions to terms of order (2u/z)3,
(2u/z)? and (2u/z) as given by Eq. 3,15
assuming z=4, respectively; curve 8 is
obtained from Eq. 3,19.
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according to each theoretical formula and T./T
were obtained from the mutual solubility data
for most binary liquid systems described in the
literature as shown in Fig. 4. Accordingly, it
may be sufficiently shown by the results for
some representative systems how values of
w/kT are affected by such various theoretical

T/T—1 (Nos. 1—8)

107 16"

e | L i
107 (N
104 10* 10* E:g 0 w0 w0

T,/T—1

i i aisal
107 10

Fig. 6. Plot on logarithmic coordinates 7—.
against |T./T—1| for several systems.

No. Symbol System Ref.

1 (¢ ] Octene—Liquid sulfur dioxide 18
2 “+ Methyldiethylamine—Water 19
3 O Palmitic acid—Liquid propane 20
4 (=] Ethylbenzene—

Liquid ammonia 13
5 X n-Heptane—Furfural 21
6 O Phenol—Water 22
-0-  Phenol—Water 17
7 ® Isooctane—Stannic iodide 23

8 © Silicon tetrachloride—
Stannic iodide 24

9 0] Carbon tetrachloride—
Perfluoromethylcyclohexane 14

=] Carbon tetrachloride—
Perfluoromethylcyclohexane 15
10 © Cyclohexane—Aniline 25
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20) D. A. Drew and A. N. Hixson, Trans. Am. Inst.
Chem. Engrs., 40, 675 (1944).

21) E. N. Pennington and 5. J. Marwil, Ind. Eng. Chem.,
45, 1371 (1953).

22) A. E. Hill and W. M. Malisoff, J. Am. Chem. Soc.,
48, 918 (1926).

23) M. E. Dice and J. H. Hildebrand, ibid., 50, 3023
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TABLE I. COMPARISON OF ESTIMATED VALUES FOR CRITICAL SOLUTION POINT
WITH OBSERVED VALUES
Observed value Eq. Eq. Eq.
System T o ———, , 5,1 1,10
Component I Component ;i T Mjgle MJ:;le AT ATe Ref.
pe °C °C °C fraction fraction °C °C
Cyclohexane Methanol 31.30 39.05 45.14 0.507 0.537 0.46 1.18 26
Cyclohexane Aniline 27.459 29.339 29.422 0.447 0.445 0.007 0.023 25
n-Heptane Furfural 37.4 48.8 93.7 0.56 0.596 11.7 17.2 21
n-Butane Perfluoro- —-53.2 —45.2 —41.0 0.37 0.365 0.5 1.0 16
n-butane
Methyldiethylamine Water* 51.28 50.52 49.42 0.902 0.922 0.10 —0.01 19
Carbon tetra- Perfluoromethyl- 4.0 14.4 26.8 0.30 0.301 2.3 3.7 14
chloride cyclohexane
4 # 27.92 28.232 28.310 0.290 0.289 —0.010 0.000 15
Benzene Perfluoromethyl- 61.1 81.6 85.3 0.27 0.255 1.3 1.8 14
cyclohexane
Phenol Water 25.0 35.0 65.85 0.910 0.924 -—2.75 3.39 22
Octene Liquid sulfur —47.1 -—32.8 -—16.4 0.801 0:749 4.0 6.0 18
dioxide
Butanol Water 80.0 90.0 125.15 0.895 0.915 —4.23 4.64 17
Isooctane Stannic iodide 185.4 191.6 195.4 0.501 0.506 0.2 0.6 23
Silicon tetra- Stannic iodide 133.4 138.2 139.8 0.432 0.389 0.1 0.3 24
chloride
Cetylstearate Liquid propane* 99.5 97.0 95.2 0.979 0.972 -0.4 -1.2 20
Palmitic acid Liquid propane* 100.5 98.5 96.9 0.966 0.936 -—-0.2 -—-0.4 20
n-Hexane Methanol 25.0 30.0 42.6 0.548 0.573 0.2 1.6 17
Ethylbenzene Liquid ammonia 0.0 10.0 10.7 0.827 0.823 0.1 0.2 13
Isopropylbenzene  Liquid ammonia 0.0 10.0 20.0 0.835 0.839 1.9 3.0 13
Mesitylene Liquid ammonia 0.0 20.0 33.9 0.841 0.826 3.6 5.4 13
1-Methyl- Liquid ammonia 0.0 20.0 28.8 0.861 0.846 1.8 3.1 13
naphthalene
Aniline Water 80.0 100.0 167.5 0.844 0.862 0.8 15.9 17

4T, indicates the difference between observed and calculated values.
* These are systems which show a lower critical solution temperature.

expressions. Fig. 4. shows the relations be-
tween w/kT by Eqgs. 3,3 and 3,17 in which z
is assumed to be 4 and T./T for systems of
ethylbenzene—liquid ammonia'®, carbon tetra-
chloride—perfluoromethylcyclohexane!t:'), n-
butane—perfluoro-n-butane'® and n-hexane—
methanol', Plots are made of values of w/kT
obtained from formulae according to several
approximations for square lattice against T./T
for the system ethylbenzene—liquid am-
monia in Fig. 5, compared with results obtained
from Eq. 3,3. As will be clear from these
figures, simple uninflected curves convex
downward are obtained by exact solution for
the two dimensional model, while similar
curves convex upward by several approximate
solutions, and it is observed that w can be
represented by neither a linear function of T
nor a constant since no linear relationships
are observed in these figures.

26) E. L. Eckfeldt and W. W. Lucasse, J. Phys. Chem.,
47, 164 (1943).

Inspection of literature data on partially
miscible binary liquid systems reveals that
w/kT is satisfactorily expressed by the follow-
ing exponential functions

w/kT— (w/kT)e=K(Te/T—1))" 4,1

where K and n are constants. When values
of |T./T—1]| are small, using the abbreviation
n for the quantity exp (w/zkT), this formula
may be transformed into

7—9e=Kn.(| Te/T—1))"/2

by expanding /7. in terms of K(T./T—1)"/z
and neglecting higher than square.

Plots of log(y—7.) against log(|T./T—1|) for
several binary liquid systems are shown in
Fig. 6 where values of 7 are evaluated from
the mutual solubility data described in the
literature according to Egs. 3,17 and 3,18
assuming z=4. It will be seen from Fig. 6
that fair straight lines are obtained from these
plots over a wide range of temperatures.

4,2)
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5. Prediction of the Critical Solution
Temperature

It has been observed that the quasi-chemical
approximation is considerably more accurate
than the zeroth approximation and the results
given by the first approximation differ little
from those given by the higher approximations.
Considering the possibility of the application
of the theory of regular solutions to the
vapor-liquid equilibria, it will be convenient
at present to estimate w/kT by the Eqgs.
3,17 and 3, 18 according to the first approxi-
mation.

Since two empirical constants K and n,
besides the critical solution temperature T,
are involved in Egs. 4,1 or 4,2, three pairs of
data are required for the estimation of the
critical solution temperature. However, it is
observed in Fig. 6 that the average value of
n for many systems is about 5/7 in the first
approximation when 2z is assumed to be 4.
When the approximate value of five seventh
is used for n in Eq. 4,2, it is possible to
estimate the critical solution temperature and
the solubility relationships at any other tem-
perature from two pairs of the mutual solu-
bility data.

In Table I are given critical compositions
estimated by Eq. 2,7 from the solubility data
at temperatures T; and T and critical solution
temperatures calculated according to the ex-
pression

T.— T\ To{ (0 —20)1° — (92— 75:) "/°}
¢ Ty —0e) 5= T2 (2 —ne) '1*
which is derived from Eq. 4,2 by the use of

approximate value of five seventh for n and
the notation of %, and 7, for the respective

G, 1
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values of exp (w/zkT) at temperatures T; and
T,, compared with experimental values and the
calculated values of critical solution tempera-
ture according to Eq. 1, 10.

It will be seen that with few exceptions in
which m in Eq. 1,9 is not a constant over a
wide range of temperatures, showing two
straight lines having different slopes on plots
of log {(1—x")/x'} against log{(1—x'")/x'"}
such as shown in Figs. 1—3 in the preceding
paper, the agreement between the experimental
and calculated values of T. by Eq. 5, 1 is about
as good as the experimental accuracy even
though the approximation of n=5/7 is used,
better than the results given by Eq. 1,10
which has been proposed by Cox and
Herington?™.

Summary

Theoretical expressions for estimating the
interchange energy w were given in such form
as to be obtained from the mutual solubility
data. It has been found that the dependency
of the interchange energy estimated from
mutual solubility data in terms of ¢-fractions
upon temperature is satisfactorily expressed
by the form of equations w/kT— (w/kT).=
K(T./T—1])". The method of predicting the
critical solution point was described as an
example of the application of the theory of
regular solutions.

The Chemical Research-Institute of
Non-Aqueous Solutions
Tohoku University
Katahira-cho, Sendai

27) 1. D. Cox and E. F. G. Herington, Trans. Faraday
Soc., 52, 926 (1956).




